A note on fixed point free involutions and equivariant maps

John J Ucci

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

The space P(Sn) of all paths co in Sn with given initial point x and endpoint — x admits an involution (Tw)(t) = -w(1-t). With the standard antipodal involution on Sn-1 an equivariant map P(Sn) -Sn-1 is constructed for n = 2, 4, or 8.

Original languageEnglish (US)
Pages (from-to)297-298
Number of pages2
JournalProceedings of the American Mathematical Society
Volume31
Issue number1
DOIs
StatePublished - 1972

Fingerprint

Equivariant Map
Involution
Fixed point
P-space
Path
Standards

Keywords

  • Co-index
  • Equivariant map
  • Fixed point free involution

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

Cite this

A note on fixed point free involutions and equivariant maps. / Ucci, John J.

In: Proceedings of the American Mathematical Society, Vol. 31, No. 1, 1972, p. 297-298.

Research output: Contribution to journalArticle

@article{445cc99e3c574110a647255372e9ea92,
title = "A note on fixed point free involutions and equivariant maps",
abstract = "The space P(Sn) of all paths co in Sn with given initial point x and endpoint — x admits an involution (Tw)(t) = -w(1-t). With the standard antipodal involution on Sn-1 an equivariant map P(Sn) -Sn-1 is constructed for n = 2, 4, or 8.",
keywords = "Co-index, Equivariant map, Fixed point free involution",
author = "Ucci, {John J}",
year = "1972",
doi = "10.1090/S0002-9939-1972-0298656-2",
language = "English (US)",
volume = "31",
pages = "297--298",
journal = "Proceedings of the American Mathematical Society",
issn = "0002-9939",
publisher = "American Mathematical Society",
number = "1",

}

TY - JOUR

T1 - A note on fixed point free involutions and equivariant maps

AU - Ucci, John J

PY - 1972

Y1 - 1972

N2 - The space P(Sn) of all paths co in Sn with given initial point x and endpoint — x admits an involution (Tw)(t) = -w(1-t). With the standard antipodal involution on Sn-1 an equivariant map P(Sn) -Sn-1 is constructed for n = 2, 4, or 8.

AB - The space P(Sn) of all paths co in Sn with given initial point x and endpoint — x admits an involution (Tw)(t) = -w(1-t). With the standard antipodal involution on Sn-1 an equivariant map P(Sn) -Sn-1 is constructed for n = 2, 4, or 8.

KW - Co-index

KW - Equivariant map

KW - Fixed point free involution

UR - http://www.scopus.com/inward/record.url?scp=84968495771&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84968495771&partnerID=8YFLogxK

U2 - 10.1090/S0002-9939-1972-0298656-2

DO - 10.1090/S0002-9939-1972-0298656-2

M3 - Article

AN - SCOPUS:84968495771

VL - 31

SP - 297

EP - 298

JO - Proceedings of the American Mathematical Society

JF - Proceedings of the American Mathematical Society

SN - 0002-9939

IS - 1

ER -