TY - GEN
T1 - A new algorithm for contact angle estimation in molecular dynamics simulations
AU - Sumith, Y. D.
AU - Maroo, Shalabh C.
N1 - Publisher Copyright:
Copyright © 2015 by ASME.
PY - 2015
Y1 - 2015
N2 - It is important to study contact angle of a liquid on a solid surface to understand its wetting properties, capillarity and surface interaction energy. While performing transient molecular dynamics (MD) simulations it requires calculating the time evolution of contact angle. This is a tedious effort to do manually or with image processing algorithms. In this work we propose a new algorithm to estimate contact angle from MD simulations directly and in a computationally efficient way. This algorithm segregates the droplet molecules from the vapor molecules using Mahalanobis distance (MND) technique. Then the density is smeared onto a 2D grid using 4th order B-spline interpolation function. The vapor liquid interface data is estimated from the grid using density filtering. With the interface data a circle is fitted using Landau method. The equation of this circle is solved for obtaining the contact angle. This procedure is repeated by rotating the droplet about the vertical axis. We have applied this algorithm to a number of studies (different potentials and thermostat methods) which involves the MD simulation of water.
AB - It is important to study contact angle of a liquid on a solid surface to understand its wetting properties, capillarity and surface interaction energy. While performing transient molecular dynamics (MD) simulations it requires calculating the time evolution of contact angle. This is a tedious effort to do manually or with image processing algorithms. In this work we propose a new algorithm to estimate contact angle from MD simulations directly and in a computationally efficient way. This algorithm segregates the droplet molecules from the vapor molecules using Mahalanobis distance (MND) technique. Then the density is smeared onto a 2D grid using 4th order B-spline interpolation function. The vapor liquid interface data is estimated from the grid using density filtering. With the interface data a circle is fitted using Landau method. The equation of this circle is solved for obtaining the contact angle. This procedure is repeated by rotating the droplet about the vertical axis. We have applied this algorithm to a number of studies (different potentials and thermostat methods) which involves the MD simulation of water.
UR - http://www.scopus.com/inward/record.url?scp=84979997550&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84979997550&partnerID=8YFLogxK
U2 - 10.1115/ICNMM2015-48569
DO - 10.1115/ICNMM2015-48569
M3 - Conference contribution
AN - SCOPUS:84979997550
T3 - ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2015, collocated with the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems
BT - ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2015, collocated with the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems
PB - American Society of Mechanical Engineers
T2 - ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2015, collocated with the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems
Y2 - 6 July 2015 through 9 July 2015
ER -