Abstract
Liquid argon time projection chambers (LArTPCs) are now a standard detector technology for making accelerator neutrino measurements, due to their high material density, precise tracking, and calorimetric capabilities. An electric field (E-field) is required in such detectors to drift ionization electrons to the anode where they are collected. The E-field of a TPC is often approximated to be uniform between the anode and the cathode planes. However, significant distortions can appear from effects such as mechanical deformations, electrode failures, or the accumulation of space charge generated by cosmic rays. The latter effect is particularly relevant for detectors placed near the Earth's surface and with large drift distances and long drift time. To determine the E-field in situ, an ultraviolet (UV) laser system is installed in the MicroBooNE experiment at Fermi National Accelerator Laboratory. The purpose of this system is to provide precise measurements of the E-field, and to make it possible to correct for 3D spatial distortions due to E-field non-uniformities. Here we describe the methodology developed for deriving spatial distortions, the drift velocity and the E-field from UV-laser measurements.
Original language | English (US) |
---|---|
Article number | P07010 |
Journal | Journal of Instrumentation |
Volume | 15 |
Issue number | 7 |
DOIs | |
State | Published - Jul 2020 |
ASJC Scopus subject areas
- Mathematical Physics
- Instrumentation
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'A method to determine the electric field of liquid argon time projection chambers using a UV laser system and its application in MicroBooNE'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
A method to determine the electric field of liquid argon time projection chambers using a UV laser system and its application in MicroBooNE. / Adams, C.; Alrashed, M.; An, R.; Anthony, J.; Asaadi, J.; Ashkenazi, A.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; Basque, V.; Bass, M.; Bay, F.; Berkman, S.; Bhanderi, A.; Bhat, A.; Bishai, M.; Blake, A.; Bolton, T.; Camilleri, L.; Caratelli, D.; Terrazas, I. Caro; Carr, R.; Fernandez, R. Castillo; Cavanna, F.; Cerati, G.; Chen, Y.; Church, E.; Cianci, D.; Cohen, E. O.; Conrad, J. M.; Convery, M.; Cooper-Troendle, L.; Crespo-Anadón, J. I.; Tutto, M. Del; Devitt, D.; Diaz, A.; Domine, L.; Duffy, K.; Dytman, S.; Eberly, B.; Ereditato, A.; Sanchez, L. Escudero; Evans, J. J.; Fitzpatrick, R. S.; Fleming, B. T.; Foppiani, N.; Franco, D.; Furmanski, A. P.; Garcia-Gamez, D.; Gardiner, S.; Genty, V.; Goeldi, D.; Gollapinni, S.; Goodwin, O.; Gramellini, E.; Green, P.; Greenlee, H.; Grosso, R.; Gu, L.; Gu, W.; Guenette, R.; Guzowski, P.; Hamilton, P.; Hen, O.; Hill, C.; Horton-Smith, G. A.; Hourlier, A.; Huang, E. C.; Itay, R.; James, C.; De Vries, J. Jan; Ji, X.; Jiang, L.; Jo, J. H.; Johnson, R. A.; Joshi, J.; Jwa, Y. J.; Karagiorgi, G.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Lepetic, I.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Marcocci, S.; Mariani, C.; Marshall, J.; Martin-Albo, J.; Caicedo, D. A.Martinez; Mason, K.; Mastbaum, A.; McConkey, N.; Meddage, V.; Mettler, T.; Miller, K.; Mills, J.; Mistry, K.; Mogan, A.; Mohayai, T.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murphy, M.; Murrells, R.; Naples, D.; Neely, R. K.; Nienaber, P.; Nowak, J.; Palamara, O.; Pandey, V.; Paolone, V.; Papadopoulou, A.; Papavassiliou, V.; Pate, S. F.; Paudel, A.; Pavlovic, Z.; Piasetzky, E.; Porzio, D.; Prince, S.; Pulliam, G.; Qian, X.; Raaf, J. L.; Radeka, V.; Rafique, A.; Ren, L.; Rochester, L.; Rogers, H. E.; Ross-Lonergan, M.; Rohr, C. Rudolf Von; Russell, B.; Scanavini, G.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sharankova, R.; Sinclair, J.; Smith, A.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, J.; Stancari, M.; John, J. St; Strauss, T.; Sutton, K.; Sword-Fehlberg, S.; Szelc, A. M.; Tagg, N.; Tang, W.; Terao, K.; Thornton, R. T.; Toups, M.; Tsai, Y. T.; Tufanli, S.; Uchida, M. A.; Usher, T.; Pontseele, W. Van De; De Water, R. G.Van; Viren, B.; Weber, M.; Wei, H.; Wickremasinghe, D. A.; Williams, Z.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Wospakrik, M.; Wu, W.; Yang, T.; Yarbrough, G.; Yates, L. E.; Zeller, G. P.; Zennamo, J.; Zhang, C.
In: Journal of Instrumentation, Vol. 15, No. 7, P07010, 07.2020.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - A method to determine the electric field of liquid argon time projection chambers using a UV laser system and its application in MicroBooNE
AU - Adams, C.
AU - Alrashed, M.
AU - An, R.
AU - Anthony, J.
AU - Asaadi, J.
AU - Ashkenazi, A.
AU - Balasubramanian, S.
AU - Baller, B.
AU - Barnes, C.
AU - Barr, G.
AU - Basque, V.
AU - Bass, M.
AU - Bay, F.
AU - Berkman, S.
AU - Bhanderi, A.
AU - Bhat, A.
AU - Bishai, M.
AU - Blake, A.
AU - Bolton, T.
AU - Camilleri, L.
AU - Caratelli, D.
AU - Terrazas, I. Caro
AU - Carr, R.
AU - Fernandez, R. Castillo
AU - Cavanna, F.
AU - Cerati, G.
AU - Chen, Y.
AU - Church, E.
AU - Cianci, D.
AU - Cohen, E. O.
AU - Conrad, J. M.
AU - Convery, M.
AU - Cooper-Troendle, L.
AU - Crespo-Anadón, J. I.
AU - Tutto, M. Del
AU - Devitt, D.
AU - Diaz, A.
AU - Domine, L.
AU - Duffy, K.
AU - Dytman, S.
AU - Eberly, B.
AU - Ereditato, A.
AU - Sanchez, L. Escudero
AU - Evans, J. J.
AU - Fitzpatrick, R. S.
AU - Fleming, B. T.
AU - Foppiani, N.
AU - Franco, D.
AU - Furmanski, A. P.
AU - Garcia-Gamez, D.
AU - Gardiner, S.
AU - Genty, V.
AU - Goeldi, D.
AU - Gollapinni, S.
AU - Goodwin, O.
AU - Gramellini, E.
AU - Green, P.
AU - Greenlee, H.
AU - Grosso, R.
AU - Gu, L.
AU - Gu, W.
AU - Guenette, R.
AU - Guzowski, P.
AU - Hamilton, P.
AU - Hen, O.
AU - Hill, C.
AU - Horton-Smith, G. A.
AU - Hourlier, A.
AU - Huang, E. C.
AU - Itay, R.
AU - James, C.
AU - De Vries, J. Jan
AU - Ji, X.
AU - Jiang, L.
AU - Jo, J. H.
AU - Johnson, R. A.
AU - Joshi, J.
AU - Jwa, Y. J.
AU - Karagiorgi, G.
AU - Ketchum, W.
AU - Kirby, B.
AU - Kirby, M.
AU - Kobilarcik, T.
AU - Kreslo, I.
AU - Lepetic, I.
AU - Li, Y.
AU - Lister, A.
AU - Littlejohn, B. R.
AU - Lockwitz, S.
AU - Lorca, D.
AU - Louis, W. C.
AU - Luethi, M.
AU - Lundberg, B.
AU - Luo, X.
AU - Marchionni, A.
AU - Marcocci, S.
AU - Mariani, C.
AU - Marshall, J.
AU - Martin-Albo, J.
AU - Caicedo, D. A.Martinez
AU - Mason, K.
AU - Mastbaum, A.
AU - McConkey, N.
AU - Meddage, V.
AU - Mettler, T.
AU - Miller, K.
AU - Mills, J.
AU - Mistry, K.
AU - Mogan, A.
AU - Mohayai, T.
AU - Moon, J.
AU - Mooney, M.
AU - Moore, C. D.
AU - Mousseau, J.
AU - Murphy, M.
AU - Murrells, R.
AU - Naples, D.
AU - Neely, R. K.
AU - Nienaber, P.
AU - Nowak, J.
AU - Palamara, O.
AU - Pandey, V.
AU - Paolone, V.
AU - Papadopoulou, A.
AU - Papavassiliou, V.
AU - Pate, S. F.
AU - Paudel, A.
AU - Pavlovic, Z.
AU - Piasetzky, E.
AU - Porzio, D.
AU - Prince, S.
AU - Pulliam, G.
AU - Qian, X.
AU - Raaf, J. L.
AU - Radeka, V.
AU - Rafique, A.
AU - Ren, L.
AU - Rochester, L.
AU - Rogers, H. E.
AU - Ross-Lonergan, M.
AU - Rohr, C. Rudolf Von
AU - Russell, B.
AU - Scanavini, G.
AU - Schmitz, D. W.
AU - Schukraft, A.
AU - Seligman, W.
AU - Shaevitz, M. H.
AU - Sharankova, R.
AU - Sinclair, J.
AU - Smith, A.
AU - Snider, E. L.
AU - Soderberg, M.
AU - Söldner-Rembold, S.
AU - Soleti, S. R.
AU - Spentzouris, P.
AU - Spitz, J.
AU - Stancari, M.
AU - John, J. St
AU - Strauss, T.
AU - Sutton, K.
AU - Sword-Fehlberg, S.
AU - Szelc, A. M.
AU - Tagg, N.
AU - Tang, W.
AU - Terao, K.
AU - Thornton, R. T.
AU - Toups, M.
AU - Tsai, Y. T.
AU - Tufanli, S.
AU - Uchida, M. A.
AU - Usher, T.
AU - Pontseele, W. Van De
AU - De Water, R. G.Van
AU - Viren, B.
AU - Weber, M.
AU - Wei, H.
AU - Wickremasinghe, D. A.
AU - Williams, Z.
AU - Wolbers, S.
AU - Wongjirad, T.
AU - Woodruff, K.
AU - Wospakrik, M.
AU - Wu, W.
AU - Yang, T.
AU - Yarbrough, G.
AU - Yates, L. E.
AU - Zeller, G. P.
AU - Zennamo, J.
AU - Zhang, C.
N1 - Publisher Copyright: © 2020 The Author(s).
PY - 2020/7
Y1 - 2020/7
N2 - Liquid argon time projection chambers (LArTPCs) are now a standard detector technology for making accelerator neutrino measurements, due to their high material density, precise tracking, and calorimetric capabilities. An electric field (E-field) is required in such detectors to drift ionization electrons to the anode where they are collected. The E-field of a TPC is often approximated to be uniform between the anode and the cathode planes. However, significant distortions can appear from effects such as mechanical deformations, electrode failures, or the accumulation of space charge generated by cosmic rays. The latter effect is particularly relevant for detectors placed near the Earth's surface and with large drift distances and long drift time. To determine the E-field in situ, an ultraviolet (UV) laser system is installed in the MicroBooNE experiment at Fermi National Accelerator Laboratory. The purpose of this system is to provide precise measurements of the E-field, and to make it possible to correct for 3D spatial distortions due to E-field non-uniformities. Here we describe the methodology developed for deriving spatial distortions, the drift velocity and the E-field from UV-laser measurements.
AB - Liquid argon time projection chambers (LArTPCs) are now a standard detector technology for making accelerator neutrino measurements, due to their high material density, precise tracking, and calorimetric capabilities. An electric field (E-field) is required in such detectors to drift ionization electrons to the anode where they are collected. The E-field of a TPC is often approximated to be uniform between the anode and the cathode planes. However, significant distortions can appear from effects such as mechanical deformations, electrode failures, or the accumulation of space charge generated by cosmic rays. The latter effect is particularly relevant for detectors placed near the Earth's surface and with large drift distances and long drift time. To determine the E-field in situ, an ultraviolet (UV) laser system is installed in the MicroBooNE experiment at Fermi National Accelerator Laboratory. The purpose of this system is to provide precise measurements of the E-field, and to make it possible to correct for 3D spatial distortions due to E-field non-uniformities. Here we describe the methodology developed for deriving spatial distortions, the drift velocity and the E-field from UV-laser measurements.
UR - http://www.scopus.com/inward/record.url?scp=85088032239&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85088032239&partnerID=8YFLogxK
U2 - 10.1088/1748-0221/15/07/P07010
DO - 10.1088/1748-0221/15/07/P07010
M3 - Article
AN - SCOPUS:85088032239
VL - 15
JO - Journal of Instrumentation
JF - Journal of Instrumentation
SN - 1748-0221
IS - 7
M1 - P07010
ER -