A light-trapping metric for solar cells with application to cadmium telluride and silicon

Hui Zhao, E. A. Schiff

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

We examine an enhancement metric for characterizing light trapping in single-junction solar cells by comparing the measured quantum efficiency spectrum and the theoretical absorptance spectrum based on ergodic light scattering. This ideal enhancement is 4n2, where n is the refractive index of the absorber layer. Using a uniform procedure, we have determined the effective enhancement from published results for many single-junction nanocrystalline, polycrystalline, and monocrystalline silicon cells, as well as for thin-film cadmium telluride (CdTe)-based cells. The largest effective enhancements were 33 for monocrystalline Si, 25 for nanocrystalline Si, and 10 for CdTe. The 4n2 benchmarks are about 50 for Si and 36 for CdTe; for CdTe, 4n2 light trapping adds about 1 mA/cm2 to the photocurrent density of a 3-μm cell. We propose a procedure that separates the effects of parasitic absorption from incomplete scattering in determining the enhancement and show that the champion enhancement of 33 for silicon was mostly limited by parasitic absorption and not by inadequate scattering.

Original languageEnglish (US)
Article number6882768
Pages (from-to)487-494
Number of pages8
JournalIEEE Journal of Photovoltaics
Volume5
Issue number2
DOIs
StatePublished - Mar 1 2015

Keywords

  • Backreflectors
  • light trapping
  • parasitic absorption

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'A light-trapping metric for solar cells with application to cadmium telluride and silicon'. Together they form a unique fingerprint.

Cite this