A joint fermi-gbm and ligo/virgo analysis of compact binary mergers from the first and second gravitational-wave observing runs

The LIGO Scientific Collaboration and the Virgo Collaboration, Fermi Gamma-Ray Burst Monitor

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

We present results from offline searches of Fermi Gamma-ray Burst Monitor (GBM) data for gamma-ray transients coincident with the compact binary coalescences observed by the gravitational-wave (GW) detectors Advanced LIGO and Advanced Virgo during their first and second observing runs. In particular, we perform follow-up for both confirmed events and low significance candidates reported in the LIGO/Virgo catalog GWTC-1. We search for temporal coincidences between these GW signals and GBM-triggered gamma-ray bursts (GRBs). We also use the GBM Untargeted and Targeted subthreshold searches to find coincident gamma-rays below the onboard triggering threshold. This work implements a refined statistical approach by incorporating GW astrophysical source probabilities and GBM visibilities of LIGO/Virgo sky localizations to search for cumulative signatures of coincident subthreshold gamma-rays. All search methods recover the short gamma-ray burst GRB 170817A occurring ∼1.7 s after the binary neutron-star merger GW170817. We also present results from a new search seeking GBM counterparts to LIGO single-interferometer triggers. This search finds a candidate joint event, but given the nature of the GBM signal and localization, as well as the high joint false alarm rate of 1.1 10-6 Hz, we do not consider it an astrophysical association. We find no additional coincidences.

Original languageEnglish (US)
Article number100
JournalAstrophysical Journal
Volume893
Issue number2
DOIs
StatePublished - Apr 20 2020

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'A joint fermi-gbm and ligo/virgo analysis of compact binary mergers from the first and second gravitational-wave observing runs'. Together they form a unique fingerprint.

Cite this