TY - GEN
T1 - A Hierarchical Framework of Cloud Resource Allocation and Power Management Using Deep Reinforcement Learning
AU - Liu, Ning
AU - Li, Zhe
AU - Xu, Jielong
AU - Xu, Zhiyuan
AU - Lin, Sheng
AU - Qiu, Qinru
AU - Tang, Jian
AU - Wang, Yanzhi
N1 - Publisher Copyright:
© 2017 IEEE.
PY - 2017/7/13
Y1 - 2017/7/13
N2 - Automatic decision-making approaches, such as reinforcement learning (RL), have been applied to (partially) solve the resource allocation problem adaptively in the cloudcomputing system. However, a complete cloud resource allocation framework exhibits high dimensions in state and action spaces, which prohibit the usefulness of traditional RL techniques. In addition, high power consumption has become one of the critical concerns in design and control of cloud computing systems, which degrades system reliability and increases cooling cost. An effective dynamic power management (DPM) policy should minimize power consumption while maintaining performance degradationwithin an acceptable level. Thus, a joint virtual machine (VM) resource allocation and power management framework is critical to the overall cloud computing system. Moreover, novel solution framework is necessary to address the even higher dimensions in state and action spaces. In this paper, we propose a novel hierarchical framework forsolving the overall resource allocation and power management problem in cloud computing systems. The proposed hierarchical framework comprises a global tier for VM resource allocation to the servers and a local tier for distributed power management of local servers. The emerging deep reinforcement learning (DRL) technique, which can deal with complicated control problems with large state space, is adopted to solve the global tier problem. Furthermore, an autoencoder and a novel weight sharing structure are adopted to handle the high-dimensional state space and accelerate the convergence speed. On the other hand, the local tier of distributed server power managements comprises an LSTM based workload predictor and a model-free RL based power manager, operating in a distributed manner. Experiment results using actual Google cluster traces showthat our proposed hierarchical framework significantly savesthe power consumption and energy usage than the baselinewhile achieving no severe latency degradation. Meanwhile, the proposed framework can achieve the best trade-off between latency and power/energy consumption in a server cluster.
AB - Automatic decision-making approaches, such as reinforcement learning (RL), have been applied to (partially) solve the resource allocation problem adaptively in the cloudcomputing system. However, a complete cloud resource allocation framework exhibits high dimensions in state and action spaces, which prohibit the usefulness of traditional RL techniques. In addition, high power consumption has become one of the critical concerns in design and control of cloud computing systems, which degrades system reliability and increases cooling cost. An effective dynamic power management (DPM) policy should minimize power consumption while maintaining performance degradationwithin an acceptable level. Thus, a joint virtual machine (VM) resource allocation and power management framework is critical to the overall cloud computing system. Moreover, novel solution framework is necessary to address the even higher dimensions in state and action spaces. In this paper, we propose a novel hierarchical framework forsolving the overall resource allocation and power management problem in cloud computing systems. The proposed hierarchical framework comprises a global tier for VM resource allocation to the servers and a local tier for distributed power management of local servers. The emerging deep reinforcement learning (DRL) technique, which can deal with complicated control problems with large state space, is adopted to solve the global tier problem. Furthermore, an autoencoder and a novel weight sharing structure are adopted to handle the high-dimensional state space and accelerate the convergence speed. On the other hand, the local tier of distributed server power managements comprises an LSTM based workload predictor and a model-free RL based power manager, operating in a distributed manner. Experiment results using actual Google cluster traces showthat our proposed hierarchical framework significantly savesthe power consumption and energy usage than the baselinewhile achieving no severe latency degradation. Meanwhile, the proposed framework can achieve the best trade-off between latency and power/energy consumption in a server cluster.
KW - Deep reinforcement learning
KW - Distributed algorithm
KW - Hierarchical framework
KW - Resource allocation
UR - http://www.scopus.com/inward/record.url?scp=85027244897&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85027244897&partnerID=8YFLogxK
U2 - 10.1109/ICDCS.2017.123
DO - 10.1109/ICDCS.2017.123
M3 - Conference contribution
AN - SCOPUS:85027244897
T3 - Proceedings - International Conference on Distributed Computing Systems
SP - 372
EP - 382
BT - Proceedings - IEEE 37th International Conference on Distributed Computing Systems, ICDCS 2017
A2 - Lee, Kisung
A2 - Liu, Ling
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 37th IEEE International Conference on Distributed Computing Systems, ICDCS 2017
Y2 - 5 June 2017 through 8 June 2017
ER -