A guide to selecting a network similarity method

Sucheta Soundarajan, Tina Eliassi-Rad, Brian Gallagher

Research output: Chapter in Book/Entry/PoemConference contribution

44 Scopus citations


We consider the problem of determining how similar two networks (without known node-correspondences) are. This problem occurs frequently in real-world applications such as transfer learning and change detection. Many networksimilarity methods exist; and it is unclear how one should select from amongst them. We provide the first empirical study on the relationships between different networksimilarity methods. Specifically, we present (1) an approach for identifying groups of comparable network-similarity methods and (2) an approach for computing the consensus among a given set of network-similarity methods. We compare and contrast twenty network-similarity methods by applying our approaches to a variety of real datasets spanning multiple domains. Our experiments demonstrate that (1) different network-similarity methods are surprisingly well correlated, (2) some complex network-similarity methods can be closely approximated by a much simpler method, and (3) a few network-similarity methods produce rankings that are very close to the consensus ranking.

Original languageEnglish (US)
Title of host publicationSIAM International Conference on Data Mining 2014, SDM 2014
EditorsMohammed Zaki, Zoran Obradovic, Pang Ning-Tan, Arindam Banerjee, Chandrika Kamath, Srinivasan Parthasarathy
PublisherSociety for Industrial and Applied Mathematics Publications
Number of pages9
ISBN (Electronic)9781510811515
StatePublished - 2014
Externally publishedYes
Event14th SIAM International Conference on Data Mining, SDM 2014 - Philadelphia, United States
Duration: Apr 24 2014Apr 26 2014

Publication series

NameSIAM International Conference on Data Mining 2014, SDM 2014


Other14th SIAM International Conference on Data Mining, SDM 2014
Country/TerritoryUnited States

ASJC Scopus subject areas

  • Computer Science Applications
  • Software


Dive into the research topics of 'A guide to selecting a network similarity method'. Together they form a unique fingerprint.

Cite this