TY - GEN
T1 - A framework of concurrent task scheduling and dynamic voltage and frequency scaling in real-time embedded systems with energy harvesting
AU - Lin, Xue
AU - Wang, Yanzhi
AU - Yue, Siyu
AU - Chang, Naehyuck
AU - Pedram, Massoud
PY - 2013
Y1 - 2013
N2 - Energy harvesting is a promising technique to overcome the limitation imposed by the finite energy capacity of batteries in conventional battery-powered embedded systems. In particular, the question of how one can achieve full energy autonomy (i.e., perpetual, battery-free operation) of a real-time embedded system with an energy harvesting capability (RTES-EH) by applying a global control strategy is investigated. The energy harvesting module is comprised of a Photovoltaic (PV) panel for harvesting energy and a supercapacitor for storing any excess energy. The global controller performs optimal operating point tracking for the PV panel, state-of-charge management for the supercapacitor, and energy-harvesting-aware real-time task scheduling with dynamic voltage and frequency scaling (DVFS) in the embedded load device. The controller, which accounts for dynamic V-I characteristics of the PV panel, terminal voltage variation and self-leakage of the supercapacitor, and power losses in voltage converters, employs a cascaded feedback control structure with an inner control loop determining the V-I operating point of the PV panel and an outer supervisory control loop performing real-time task scheduling and setting the voltage and frequency level in the embedded load device (to keep the state-of-charge of the supercapacitor in a desirable range). Experimental results show that the proposed global controller lowers the task drop rate in a RTES-EH by up to 60% compared with baseline controller within the same service time.
AB - Energy harvesting is a promising technique to overcome the limitation imposed by the finite energy capacity of batteries in conventional battery-powered embedded systems. In particular, the question of how one can achieve full energy autonomy (i.e., perpetual, battery-free operation) of a real-time embedded system with an energy harvesting capability (RTES-EH) by applying a global control strategy is investigated. The energy harvesting module is comprised of a Photovoltaic (PV) panel for harvesting energy and a supercapacitor for storing any excess energy. The global controller performs optimal operating point tracking for the PV panel, state-of-charge management for the supercapacitor, and energy-harvesting-aware real-time task scheduling with dynamic voltage and frequency scaling (DVFS) in the embedded load device. The controller, which accounts for dynamic V-I characteristics of the PV panel, terminal voltage variation and self-leakage of the supercapacitor, and power losses in voltage converters, employs a cascaded feedback control structure with an inner control loop determining the V-I operating point of the PV panel and an outer supervisory control loop performing real-time task scheduling and setting the voltage and frequency level in the embedded load device (to keep the state-of-charge of the supercapacitor in a desirable range). Experimental results show that the proposed global controller lowers the task drop rate in a RTES-EH by up to 60% compared with baseline controller within the same service time.
KW - DVFS
KW - Task scheduling
KW - photovoltaic
KW - real-time embedded system
KW - supercapacitor
UR - http://www.scopus.com/inward/record.url?scp=84889590496&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84889590496&partnerID=8YFLogxK
U2 - 10.1109/ISLPED.2013.6629269
DO - 10.1109/ISLPED.2013.6629269
M3 - Conference contribution
AN - SCOPUS:84889590496
SN - 9781479912353
T3 - Proceedings of the International Symposium on Low Power Electronics and Design
SP - 70
EP - 75
BT - Proceedings of the International Symposium on Low Power Electronics and Design, ISLPED 2013
T2 - 2013 ACM/IEEE International Symposium on Low Power Electronics and Design, ISLPED 2013
Y2 - 4 September 2013 through 6 September 2013
ER -