A filamentous growth response mediated by the yeast mating pathway

Scott Erdman, Michael Snyder

Research output: Contribution to journalArticlepeer-review

74 Scopus citations

Abstract

Haploid cells of the budding yeast Saccharomyces cerevisiae respond to mating pheromones by arresting their cell-division cycle in G1 and differentiating into a cell type capable of locating and fusing with mating partners. Yeast cells undergo chemotactic cell surface growth when pheromones are present above a threshold level for morphogenesis; however, the morphogenetic responses of cells to levels of pheromone below this threshold have not been systematically explored. Here we show that MATa haploid cells exposed to low levels of the α-factor mating pheromone undergo a novel cellular response: cells modulate their division patterns and cell shape, forming colonies composed of filamentous chains of cells. Time-lapse analysis of filament formation shows that its dynamics are distinct from that of pseudohyphal growth; during pheromone-induced filament formation, daughter cells are delayed relative to mother cells with respect to the timing of bud emergence. Filament formation requires the RSR1(BUD1), BUD8, SLK1/ BCK1, and SPA2 genes and many elements of the STE11/STE7 MAP kinase pathway; this response is also independent of FAR1, a gene involved in orienting cell polarization during the mating response. We suggest that mating yeast cells undergo a complex response to low levels of pheromone that may enhance the ability of cells to search for mating partners through the modification of cell shape and alteration of cell-division patterns.

Original languageEnglish (US)
Pages (from-to)919-928
Number of pages10
JournalGenetics
Volume159
Issue number3
StatePublished - 2001

ASJC Scopus subject areas

  • Genetics

Fingerprint

Dive into the research topics of 'A filamentous growth response mediated by the yeast mating pathway'. Together they form a unique fingerprint.

Cite this