A Delay Distribution Methodology for the Optimal Systolic Synthesis of Linear Recurrence Algorithms

C. Y. Roger Chen, Michael Z. Moricz

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

In this paper, we introduce a systematic methodology based on the concept of delay distribution to optimize the systolic scheduling of data flow graphs, which represent one-dimensional (1-D) linear recurrence algorithms (LRA’s). After this, step-by-step examples are given to illustrate the procedure. Then we show that this procedure produces optimally scheduled data flow graphs (DFG’s) for VLSI systolic implementation. Our goal, in this paper, is to transform the DFG of a linear recurrence algorithm into an optimal form for VLSI systolic implementation. Considerable improvements have been achieved over previous works. Comparisons are made between our and previous designs on the examples of infinite impulse response (IIR) filters and finite impulse response (FIR) filters. Finally, a generalization of the procedure to/V-dimensional linear recurrence algorithms is given, using the 1-D case as its basis.

Original languageEnglish (US)
Pages (from-to)685-697
Number of pages13
JournalIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
Volume10
Issue number6
DOIs
StatePublished - Jun 1991

ASJC Scopus subject areas

  • Software
  • Computer Graphics and Computer-Aided Design
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'A Delay Distribution Methodology for the Optimal Systolic Synthesis of Linear Recurrence Algorithms'. Together they form a unique fingerprint.

Cite this