TY - GEN
T1 - A data-driven approach for improving sustainability assessment in advanced manufacturing
AU - Li, Yunpeng
AU - Zhang, Heng
AU - Roy, Utpal
AU - Lee, Y. Tina
N1 - Publisher Copyright:
© 2017 IEEE.
PY - 2017/7/1
Y1 - 2017/7/1
N2 - Sustainability assessment (SA) has been one of the prime contributors to advanced manufacturing analysis, and it traditionally involves life cycle assessment (LCA) techniques for retrospective and prospective evaluations. One big challenge to reach a reliable sustainability assessment comes from the inadequate understandings of the underlying activities related to each of the product lifecycle stages based on expert knowledge. Data-driven modeling, on the other hand, is an emerging approach that takes advantage of machine-learning methods in building models that would complement or replace the knowledge-based models capturing physical behaviors. Incorporating suitable data analytics models to utilize real-time product and process data could significantly improve LCA techniques. To address the complexity and uncertainty involved in multilevel SA decision-making activities, this paper proposes a modular LCA framework to accommodate a hybrid modeling paradigm that includes knowledge-based and data-driven models. We identify and emphasize on two important challenges: (1) Generalizing knowledge-based and data-driven models into analytics models so that they can be uniformly deployed and interchanged, and (2) Modularizing the LCA decision logics and model structures so that the LCA decision process can be streamlined and easily maintained. The issues related to the decomposition, standardization, deployment and execution of analytics models are discussed in this paper. Three well-adopted standards - STEP (Standard for the Exchange of Product model data), DMN (Decision Model and Notation), and PMML (Predictive Model Markup Language) are employed to capture the product-related data/information, the decision logic decomposition of analytics models, and the structure decomposition of analytics models, respectively. The feasibility and benefits of the proposed modular, hybrid sustainability assessment methodology have been illustrated with an injection molding case study, incorporating an overall modular Scorecard-based LCA architecture with a Bayesian Network predictive model.
AB - Sustainability assessment (SA) has been one of the prime contributors to advanced manufacturing analysis, and it traditionally involves life cycle assessment (LCA) techniques for retrospective and prospective evaluations. One big challenge to reach a reliable sustainability assessment comes from the inadequate understandings of the underlying activities related to each of the product lifecycle stages based on expert knowledge. Data-driven modeling, on the other hand, is an emerging approach that takes advantage of machine-learning methods in building models that would complement or replace the knowledge-based models capturing physical behaviors. Incorporating suitable data analytics models to utilize real-time product and process data could significantly improve LCA techniques. To address the complexity and uncertainty involved in multilevel SA decision-making activities, this paper proposes a modular LCA framework to accommodate a hybrid modeling paradigm that includes knowledge-based and data-driven models. We identify and emphasize on two important challenges: (1) Generalizing knowledge-based and data-driven models into analytics models so that they can be uniformly deployed and interchanged, and (2) Modularizing the LCA decision logics and model structures so that the LCA decision process can be streamlined and easily maintained. The issues related to the decomposition, standardization, deployment and execution of analytics models are discussed in this paper. Three well-adopted standards - STEP (Standard for the Exchange of Product model data), DMN (Decision Model and Notation), and PMML (Predictive Model Markup Language) are employed to capture the product-related data/information, the decision logic decomposition of analytics models, and the structure decomposition of analytics models, respectively. The feasibility and benefits of the proposed modular, hybrid sustainability assessment methodology have been illustrated with an injection molding case study, incorporating an overall modular Scorecard-based LCA architecture with a Bayesian Network predictive model.
KW - Bayesian Network
KW - DMN
KW - Data-driven modeling
KW - PMML
KW - Sustainability assessment
UR - http://www.scopus.com/inward/record.url?scp=85047840250&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85047840250&partnerID=8YFLogxK
U2 - 10.1109/BigData.2017.8258116
DO - 10.1109/BigData.2017.8258116
M3 - Conference contribution
AN - SCOPUS:85047840250
T3 - Proceedings - 2017 IEEE International Conference on Big Data, Big Data 2017
SP - 1736
EP - 1745
BT - Proceedings - 2017 IEEE International Conference on Big Data, Big Data 2017
A2 - Nie, Jian-Yun
A2 - Obradovic, Zoran
A2 - Suzumura, Toyotaro
A2 - Ghosh, Rumi
A2 - Nambiar, Raghunath
A2 - Wang, Chonggang
A2 - Zang, Hui
A2 - Baeza-Yates, Ricardo
A2 - Baeza-Yates, Ricardo
A2 - Hu, Xiaohua
A2 - Kepner, Jeremy
A2 - Cuzzocrea, Alfredo
A2 - Tang, Jian
A2 - Toyoda, Masashi
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 5th IEEE International Conference on Big Data, Big Data 2017
Y2 - 11 December 2017 through 14 December 2017
ER -