A copper-clad lithiophilic current collector for dendrite-free lithium metal anodes

Ke Chen, Rajesh Pathak, Ashim Gurung, Khan M. Reza, Nabin Ghimire, Jyotshna Pokharel, Abiral Baniya, Wei He, James J. Wu, Qiquan Qiao, Yue Zhou

Research output: Contribution to journalArticlepeer-review

58 Scopus citations

Abstract

Lithium (Li) metal has been considered as one of the most attractive anode materials of Li batteries due to its high theoretical capacity and low electrochemical potential. However, dendrite formation and large volume change during battery operation hinder its commercialization. Here, we created a three-dimensional (3D) light-weight and mechanically flexible copper-clad carbon framework (CuCF) as a lithiophilic current collector. The CuCF can be made by scalable pyrolysis of a melamine-formaldehyde foam (MF) followed by copper electroplating. The carbon framework (CF) without copper cladding has a lower conductivity (4.32 × 10-4 S cm-1) and fewer non-uniform lithium nucleation sites, leading to lithium dendrite growth during plating/stripping. By surface engineering with copper-cladding, the CuCF has a much higher conductivity (1.38 × 10-2 S cm-1) and more Li nucleation sites which allow a uniform and smooth Li deposition. Moreover, the excellent mechanical flexibility and enlarged surface area of the CuCF current collector can accommodate volume expansion and reduce local current density. As a result, a dendrite-free Li metal anode is achieved with a high coulombic efficiency of 99.5% even after 300 plating/stripping cycles (∼1200 hours). Significantly, it can last for more than 170 cycles at a high current of 5 mA cm-2 in a symmetric cell cycling test. Furthermore, a Li/lithium iron phosphate (LFP) cell exhibits a long cycling life at a high current of 1C.

Original languageEnglish (US)
Pages (from-to)1911-1919
Number of pages9
JournalJournal of Materials Chemistry A
Volume8
Issue number4
DOIs
StatePublished - 2020
Externally publishedYes

ASJC Scopus subject areas

  • General Chemistry
  • Renewable Energy, Sustainability and the Environment
  • General Materials Science

Fingerprint

Dive into the research topics of 'A copper-clad lithiophilic current collector for dendrite-free lithium metal anodes'. Together they form a unique fingerprint.

Cite this