TY - JOUR
T1 - A continuum of discrete systems
AU - Blair, Howard A.
AU - Chidella, Jagan
AU - Dushin, Fred
AU - Ferry, Audrey
AU - Humenn, Polar
PY - 1997
Y1 - 1997
N2 - We show how to regard covered logic programs as cellular automata. Covered logic programs are ones for which every variable occurring in the body of a given clause also occurs in the head of the same clause. We generalize the class of register machine programs to permit negative literals and characterize the members of this class of programs as n-state 2-dimensional cellular automata. We show how monadic covered programs, the class of which is computationally universal, can be regarded as 1-dimensional cellular automata. We show how to continuously (and differentiably) deform 1-dimensional cellular automata from one to another and understand the arrangement of these cellular automata in a separable Hilbert space over the real numbers. The embedding of the cellular automata of fixed radius r is a linear mapping into R22r+1 in which a cellular automaton's transition function is the attractor of a state-governed iterated function system of affine contraction mappings. The class of covered monadic programs having a particular fixed point has a uniform arrangement in an affine subspace of the Hilbert space ℓ2. Furthermore, these programs are construable as almost everywhere continuous functions from the unit interval {x | 0 ≤ x ≤ 1} to the real numbers R. As one consequence, in particular, we can define a variety of natural metrics on the class of these programs. Moreover, for each program in this class, the set of initial segments of the program's fixed points, with respect to an ordering induced by the program's dependency relation, is a regular set.
AB - We show how to regard covered logic programs as cellular automata. Covered logic programs are ones for which every variable occurring in the body of a given clause also occurs in the head of the same clause. We generalize the class of register machine programs to permit negative literals and characterize the members of this class of programs as n-state 2-dimensional cellular automata. We show how monadic covered programs, the class of which is computationally universal, can be regarded as 1-dimensional cellular automata. We show how to continuously (and differentiably) deform 1-dimensional cellular automata from one to another and understand the arrangement of these cellular automata in a separable Hilbert space over the real numbers. The embedding of the cellular automata of fixed radius r is a linear mapping into R22r+1 in which a cellular automaton's transition function is the attractor of a state-governed iterated function system of affine contraction mappings. The class of covered monadic programs having a particular fixed point has a uniform arrangement in an affine subspace of the Hilbert space ℓ2. Furthermore, these programs are construable as almost everywhere continuous functions from the unit interval {x | 0 ≤ x ≤ 1} to the real numbers R. As one consequence, in particular, we can define a variety of natural metrics on the class of these programs. Moreover, for each program in this class, the set of initial segments of the program's fixed points, with respect to an ordering induced by the program's dependency relation, is a regular set.
UR - http://www.scopus.com/inward/record.url?scp=21944445206&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=21944445206&partnerID=8YFLogxK
U2 - 10.1023/a:1018913302060
DO - 10.1023/a:1018913302060
M3 - Article
AN - SCOPUS:21944445206
SN - 1012-2443
VL - 21
SP - 153
EP - 186
JO - Annals of Mathematics and Artificial Intelligence
JF - Annals of Mathematics and Artificial Intelligence
IS - 2-4
ER -