A condensed generalized finite element method (CGFEM) for interface problems

Qinghui Zhang, Cu Cui, Uday Banerjee, Ivo Babuška

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

Extensive developments on various generalizations of the Finite Element Method (FEM) for the interface problems, with unfitted mesh, have been made in the last few decades. Typical generalizations and techniques include the immersed FEM, the penalized FEM, the generalized or the extended FEM (GFEM/XFEM). The GFEM/XFEM achieves good approximation by augmenting the finite element approximation space with enrichment functions, which require additional degrees of freedom (DOF). However these additional DOFs, in general, deteriorate the conditioning of the GFEM/XFEM. In this study, we propose a condensed GFEM (CGFEM) for the interface problem based on the partition of unity method and a local least square scheme. Compared to the conventional GFEM/XFEM, the CGFEM possesses the same number of DOFs as in the FEM, yields good approximation, and is well-conditioned. In comparison with the immersed FEM, the construction of shape functions of CGFEM is independent of the equation types and the material coefficients of the interface problem. As a result, the CGFEM could be applied to more general interface problems, e.g., problems with anisotropic materials and elasticity systems, in a unified approach. Moreover, the shape functions of CGFEM are continuous, and thus do not need any penalty terms and parameters. The optimal order of convergence of the CGFEM has been analyzed and established theoretically in this paper. Numerical experiments for isotropic and anisotropic interface problems and comparisons with the conventional GFEM/XFEM have also been presented to illuminate the theory and effectiveness of CGFEM.

Original languageEnglish (US)
Article number114537
JournalComputer Methods in Applied Mechanics and Engineering
Volume391
DOIs
StatePublished - Mar 1 2022

Keywords

  • Condensed scheme
  • Conditioning
  • GFEM
  • Interface
  • XFEM

ASJC Scopus subject areas

  • Computational Mechanics
  • Mechanics of Materials
  • Mechanical Engineering
  • General Physics and Astronomy
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'A condensed generalized finite element method (CGFEM) for interface problems'. Together they form a unique fingerprint.

Cite this