TY - JOUR
T1 - A catalog of validity indices for step counting wearable technologies during treadmill walking
T2 - the CADENCE-Kids study
AU - Gould, Zachary R.
AU - Mora-Gonzalez, Jose
AU - Aguiar, Elroy J.
AU - Schuna, John M.
AU - Barreira, Tiago V.
AU - Moore, Christopher C.
AU - Staudenmayer, John
AU - Tudor-Locke, Catrine
N1 - Funding Information:
The CADENCE-Kids study was prospectively registered at ClinicalTrials.gov (NCT01989104). This work was supported by an award from the National Institute of Health (NIH) NICHD 1R21HD073807 and in part by 1 U54 GM104940 from the National Institute of General Medical Sciences of the National Institutes of Health, which funds the Louisiana Clinical and Translational Science Center. The funding bodies had no role in the design of the study, the collection, analysis, or interpretation of data, or in the writing or decision to submit the manuscript for publication. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.
Publisher Copyright:
© 2021, The Author(s).
PY - 2021/12
Y1 - 2021/12
N2 - Background: Wearable technologies play an important role in measuring physical activity (PA) and promoting health. Standardized validation indices (i.e., accuracy, bias, and precision) compare performance of step counting wearable technologies in young people. Purpose: To produce a catalog of validity indices for step counting wearable technologies assessed during different treadmill speeds (slow [0.8–3.2 km/h], normal [4.0–6.4 km/h], fast [7.2–8.0 km/h]), wear locations (waist, wrist/arm, thigh, and ankle), and age groups (children, 6–12 years; adolescents, 13–17 years; young adults, 18–20 years). Methods: One hundred seventeen individuals (13.1 ± 4.2 years, 50.4% female) participated in this cross-sectional study and completed 5-min treadmill bouts (0.8 km/h to 8.0 km/h) while wearing eight devices (Waist: Actical, ActiGraph GT3X+, NL-1000, SW-200; Wrist: ActiGraph GT3X+; Arm: SenseWear; Thigh: activPAL; Ankle: StepWatch). Directly observed steps served as the criterion measure. Accuracy (mean absolute percentage error, MAPE), bias (mean percentage error, MPE), and precision (correlation coefficient, r; standard deviation, SD; coefficient of variation, CoV) were computed. Results: Five of the eight tested wearable technologies (i.e., Actical, waist-worn ActiGraph GT3X+, activPAL, StepWatch, and SW-200) performed at < 5% MAPE over the range of normal speeds. More generally, waist (MAPE = 4%), thigh (4%) and ankle (5%) locations displayed higher accuracy than the wrist location (23%) at normal speeds. On average, all wearable technologies displayed the lowest accuracy across slow speeds (MAPE = 50.1 ± 35.5%), and the highest accuracy across normal speeds (MAPE = 15.9 ± 21.7%). Speed and wear location had a significant effect on accuracy and bias (P < 0.001), but not on precision (P > 0.05). Age did not have any effect (P > 0.05). Conclusions: Standardized validation indices focused on accuracy, bias, and precision were cataloged by speed, wear location, and age group to serve as important reference points when selecting and/or evaluating device performance in young people moving forward. Reduced performance can be expected at very slow walking speeds (0.8 to 3.2 km/h) for all devices. Ankle-worn and thigh-worn devices demonstrated the highest accuracy. Speed and wear location had a significant effect on accuracy and bias, but not precision. Trial registration: Clinicaltrials.govNCT01989104. Registered November 14, 2013.
AB - Background: Wearable technologies play an important role in measuring physical activity (PA) and promoting health. Standardized validation indices (i.e., accuracy, bias, and precision) compare performance of step counting wearable technologies in young people. Purpose: To produce a catalog of validity indices for step counting wearable technologies assessed during different treadmill speeds (slow [0.8–3.2 km/h], normal [4.0–6.4 km/h], fast [7.2–8.0 km/h]), wear locations (waist, wrist/arm, thigh, and ankle), and age groups (children, 6–12 years; adolescents, 13–17 years; young adults, 18–20 years). Methods: One hundred seventeen individuals (13.1 ± 4.2 years, 50.4% female) participated in this cross-sectional study and completed 5-min treadmill bouts (0.8 km/h to 8.0 km/h) while wearing eight devices (Waist: Actical, ActiGraph GT3X+, NL-1000, SW-200; Wrist: ActiGraph GT3X+; Arm: SenseWear; Thigh: activPAL; Ankle: StepWatch). Directly observed steps served as the criterion measure. Accuracy (mean absolute percentage error, MAPE), bias (mean percentage error, MPE), and precision (correlation coefficient, r; standard deviation, SD; coefficient of variation, CoV) were computed. Results: Five of the eight tested wearable technologies (i.e., Actical, waist-worn ActiGraph GT3X+, activPAL, StepWatch, and SW-200) performed at < 5% MAPE over the range of normal speeds. More generally, waist (MAPE = 4%), thigh (4%) and ankle (5%) locations displayed higher accuracy than the wrist location (23%) at normal speeds. On average, all wearable technologies displayed the lowest accuracy across slow speeds (MAPE = 50.1 ± 35.5%), and the highest accuracy across normal speeds (MAPE = 15.9 ± 21.7%). Speed and wear location had a significant effect on accuracy and bias (P < 0.001), but not on precision (P > 0.05). Age did not have any effect (P > 0.05). Conclusions: Standardized validation indices focused on accuracy, bias, and precision were cataloged by speed, wear location, and age group to serve as important reference points when selecting and/or evaluating device performance in young people moving forward. Reduced performance can be expected at very slow walking speeds (0.8 to 3.2 km/h) for all devices. Ankle-worn and thigh-worn devices demonstrated the highest accuracy. Speed and wear location had a significant effect on accuracy and bias, but not precision. Trial registration: Clinicaltrials.govNCT01989104. Registered November 14, 2013.
KW - Accelerometer
KW - Accuracy
KW - Bias
KW - Measurement
KW - Pedometer
KW - Physical activity
UR - http://www.scopus.com/inward/record.url?scp=85110450793&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85110450793&partnerID=8YFLogxK
U2 - 10.1186/s12966-021-01167-y
DO - 10.1186/s12966-021-01167-y
M3 - Article
C2 - 34271922
AN - SCOPUS:85110450793
SN - 1479-5868
VL - 18
JO - International Journal of Behavioral Nutrition and Physical Activity
JF - International Journal of Behavioral Nutrition and Physical Activity
IS - 1
M1 - 97
ER -