A 3D diamond detector for particle tracking

M. Artuso, F. Bachmair, L. Bäni, M. Bartosik, J. Beacham, V. Bellini, V. Belyaev, B. Bentele, E. Berdermann, P. Bergonzo, A. Bes, J. M. Brom, M. Bruzzi, M. Cerv, C. Chau, G. Chiodini, D. Chren, V. Cindro, G. Claus, J. CollotS. Costa, J. Cumalat, A. Dabrowski, R. Dalessandro, W. De Boer, B. Dehning, D. Dobos, M. Dünser, V. Eremin, R. Eusebi, G. Forcolin, J. Forneris, H. Frais-Kölbl, K. K. Gan, M. Gastal, M. Goffe, J. Goldstein, A. Golubev, L. Gonella, A. Gorišek, L. Graber, E. Grigoriev, J. Grosse-Knetter, B. Gui, M. Guthoff, I. Haughton, D. Hidas, D. Hits, M. Hoeferkamp, T. Hofmann, J. Hosslet, J. Y. Hostachy, F. Hügging, H. Jansen, J. Janssen, H. Kagan, K. Kanxheri, G. Kasieczka, R. Kass, F. Kassel, M. Kis, G. Kramberger, S. Kuleshov, A. Lacoste, S. Lagomarsino, A. Lo Giudice, C. Maazouzi, I. Mandic, C. Mathieu, N. McFadden, G. McGoldrick, M. Menichelli, M. Mikuž, A. Morozzi, J. Moss, R. Mountain, S. Murphy, A. Oh, P. Olivero, G. Parrini, D. Passeri, M. Pauluzzi, H. Pernegger, R. Perrino, F. Picollo, M. Pomorski, R. Potenza, A. Quadt, A. Re, G. Riley, S. Roe, M. Sapinski, M. Scaringella, S. Schnetzer, T. Schreiner, S. Sciortino, A. Scorzoni, S. Seidel, L. Servoli, A. Sfyrla, G. Shimchuk, D. S. Smith, B. Sopko, V. Sopko, S. Spagnolo, S. Spanier, K. Stenson, R. Stone, C. Sutera, A. Taylor, M. Traeger, D. Tromson, W. Trischuk, C. Tuve, L. Uplegger, J. Velthuis, N. Venturi, E. Vittone, S. Wagner, R. Wallny, J. C. Wang, P. Weilhammer, J. Weingarten, C. Weiss, T. Wengler, N. Wermes, M. Yamouni, M. Zavrtanik

Research output: Contribution to journalArticle

5 Scopus citations

Abstract

In the present study, results towards the development of a 3D diamond sensor are presented. Conductive channels are produced inside the sensor bulk using a femtosecond laser. This electrode geometry allows full charge collection even for low quality diamond sensors. Results from testbeam show that charge is collected by these electrodes. In order to understand the channel growth parameters, with the goal of producing low resistivity channels, the conductive channels produced with a different laser setup are evaluated by Raman spectroscopy.

Original languageEnglish (US)
Pages (from-to)402-405
Number of pages4
JournalNuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Volume824
DOIs
StatePublished - Jul 11 2016

Keywords

  • CVD diamond
  • Solid state detectors
  • Tracking detectors

ASJC Scopus subject areas

  • Nuclear and High Energy Physics
  • Instrumentation

Fingerprint Dive into the research topics of 'A 3D diamond detector for particle tracking'. Together they form a unique fingerprint.

  • Cite this

    Artuso, M., Bachmair, F., Bäni, L., Bartosik, M., Beacham, J., Bellini, V., Belyaev, V., Bentele, B., Berdermann, E., Bergonzo, P., Bes, A., Brom, J. M., Bruzzi, M., Cerv, M., Chau, C., Chiodini, G., Chren, D., Cindro, V., Claus, G., ... Zavrtanik, M. (2016). A 3D diamond detector for particle tracking. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 824, 402-405. https://doi.org/10.1016/j.nima.2015.09.079